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I. Phys. A Math. Gen. 27 (1994) L93SL938. Printed in Ihe UK 

LETTER TO THE EDITOR 

Exact second-order correlation functions for random surface 
fractals 

Helmut Hermann 
InstiNte of Solid State and Materials Research Dresden, Posthch 270016, D-01171 Dresden, 
-Y 

Received 18 August 1994 

Abstraet Exact analytical expressions for secondader correlation functions of both satistically 
homogeneous and heterogeneous models for random surface fractals m presented. The matment 
is based on random g e m m i n  models and set-theoretical operations. The homogeneous two- 
phase models are variable with respect to volume fraction (0 to I), fractal dimension of the 
internal surface (2 to 3) and lhe geomeby of the convex p ins .  For heterogeneous models, 
the characteristics of two-phase microstructures supimposed onto the homogeneous hctal 
s u b s t ~ ~ ~ t m e  can also be varied in a wide range. 

The second-order correlation function C(r )  is an important characteristic of random two- 
phase structures. It describes the probability of finding two arbitrary test points, both 
situated within one of the two phases, and its dependence on the distance of the test points. 
Several physical properties are directly related to CO). One of these is the small-angle 
scattering intensity (see, for example, Glatter and Kratky (1982)), which is simply the 
Fourier transform of C(r) .  Another property is the absorption behaviour of x-rays scattered 
by heterogeneous materials with non-vanishing absorption contrast (Hermann and Ermrich 
1987). 

In the present letter, the second-order correlation function C(r)  is derived for variable 
models of random surface fractals. The considered models are generalizations of the 
spherical tremata model proposed by Mandelbrot (1991), the homogeneous discrete scaling 
model by Hermann (1991a, b), and the continuous scaling model by Hermann and Ohser 
(1993). The generalizations concem the shape of the basic geometrical objects (grains) and 
the generation of two-phase microstructures, with fractal substructure of one phase. Exact 
expressions are given for C(r) ,  where the fractal dimension df of the intemal surface is 
tunable in the complete range 2 < df < 3, and the volume fraction c can also be chosen 
arbitrarily, i.e. 0 < c < 1. 

A series of models for fractal structures is based on numerical algorithms. One of 
these is the cluster-cluster aggregation model by Thouy and Jullien (1994). with tunable 
fractal dimension and analytical solutions for some special cases. The algorithms for the 
construction of the present models can, of course, also be realized on a computer. This 
should be performed if, for example, higher-order characteristics of the models are to be 

The discrete and continuous scaling models mentioned above are based on random 
germ-grain algorithms. The germs are given by the points of a random-point field generated 
according to the well known Poisson distribution and characterized by the number density 

analysed. 
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of points A. Each of the germs is covered by a convex grain of size b, where overlaps of 
grains may occur. Then, a random set A is defined, comprising all grains distributed in 
this way. The surface of the random set A can be fractal or non-fractal, depending on the 
values of h and the parameters of the size distribution of the grains. Volume fraction CA and 
correlation function CA@) of A are given (cf, for example, Stoyan et ul (1987), Hermann 
(1991a)) by 

(1) CA = 1 - exp(-Av) 

CA(r) = 2CA - i f (1 - CA)'eXp[Ap(r)] 

and 

(2) 

where ? is the mean volume of the grains. 

is the distance probability function ofthe grains averaged over all spatial orientations ((. . ,)n) 
of a single grain and over all grains ((. . .)wnJ, used for the conshuction of the model where 
a given gain is characterized by its shape function 

1 T-Egra in  I 0 otherwise. 
S(T)  = 

The homogeneous continuous scaling model is defined by 

I A = '&,,A. 

where A. is a germ-grain model with parameters 

& 11'60 A. =.~U-~A.O U T  < U < 1. 

For ut -+ 0 and 

(4) 

2v+ 1 <.LA 6 3 v +  1 (7) 

the model is fractal with 

CL-1 df= -. 
v 

(The fractal dimension is calculated according to the Minkowski-Bouligand definition, see 
Z&le (19841, Hermann and Ohser (1993)J Now, C A ( ~ )  is calculated using random Poisson 
polyhedra as grains. (For definition and properties of Poisson polyhedra see Stoyan et aI 
(1987).) A set of Poisson polyhedra is characterized by the mean breadth 6" (the breadth 
of a geometrical object is the distance between two parallel supporting planes; here, the 
average is taken over all spatial orientations of the measured object, and over all objects of 
the set), the mean volume 

- 16-, 
Vu = -b, 

91r 
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and 

Using (l), (5). (6) and the expressions 

I 
1 = 1, A. du 

j+) = l: ?y(r)du 

and carrying out the limit u1 + 0, one obtains 

The homogeneous continuous scaling model with spherical grains can be treated 
analogously, where 

must be used for averaging the distance probability function of the spheres, and f ( x )  is the 
radii distribution (see, for example, Hermann (1991a)). SpecifLing 60 = 2R0, where RO is 
the radius of the largest sphere, it follows that 

Inserting, respectively, (14) and (16) into general expression (2) for the two-point correlation 
function of the used gern-grain models, one obtains CA(r) for homogeneous continuous 
scaling surface fractals with polyhedral and spherical grains. The model parameters are 
volume fraction CA, 0 < CA < 1, maximum mean grain size 60, 60 > 0 and fractal 
dimension df, 2 < df < 3. 

The present surface fractals are homogeneous in a statistical sense. One can generate 
two-phase microstructures, where the substructure of one of the microstructural phases is 
fractal. Let 

r c A  I '  0 otherwise 
sa( r )  = 
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define the shape function of the homogeneous surface fractal A, and 

the geometrical distribution M of the superimposed microstructural phase. The correlation 
function of the region A n M, which belongs to both A and M, is 

C(r) = SA(U + T)SA(U)SM(U + r )Sdu)dV. (19) 

where the isotropy of the considered germ-gain models is taken into account, and M is 
also assumed to be isotropic. 

Instead of M, one may choose a set Mp,  which is obtained from M by shifting M by 
a vector p. Because of the statistical homogeneity of A, the characteristics of the fractal 
substructure in M and Mp are the same. Replacing M by Mp in (19), and averaging over 
p, one obtains 

' S  

= CA(r )Cdr)  (20) 

where CA@) and C&) are the correlation functions of the statistically homogeneous 
surface fractal and phase M of the superimposed microstructure, respectively. 

The variety of possible two-phase models, with fractal substructure of one of the phases, 
can even be extended by applying the set-theoretical operation 

D --f Dc (21) 

where DE is the set of all points outside D including the boundary of D. (Dc is called the 
complement of D.) Then, the relations 
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